GAFTANO BARBATO

NOTE IDROBIOLOGICHE SUL LAGO DI LEDRO

SOMMARIO: In un arco di tempo compreso fra il 1969 e il 1977 è stato effettuato un controllo della temperatura delle acque del Lago di Ledro, divenuto dal 1948 bacino serbatoio del lago di Garda. Sono state fatte anche delle analisi del fitoplancton e dello zooplancton a varie profondità cercando di evidenziare, soprattutto per quest'ultimo, le variazioni avvenute dopo la connessione idraulica con il Benaco.

PREMESSA

Nel periodo Luglio 1949-Agosto 1952 è stata effettuata una ricerca limnologica sul lago di Ledro da parte di Tonolli dell'Ist. Italiano di Idrobiologia di Pallanza. Tale ricerca tendeva a mettere in evidenza le modificazioni avvenute nella situazione termica delle acque e nella biocenosi zooplantonica in seguito alla connessione idraulica Ledro-Garda. Il lago di
Ledro infatti è divenuto un bacino serbatoio del Benaco dal 1949 mediante
la costruzione di una galleria che si apre a 25 metri di profondità nel lago
di Ledro, e attraverso la quale le acque sono convogliate alla centrale di
Riva per terminare successivamente nel Garda. Nei periodi durante i quali
le necesità di energia elettrica sono minori e la centrale è inattiva viene effettuato un pompaggio prelevando acqua negli strati superficiali del Benaco
ed immettendola nel Ledro sempre tramite la suddetta galleria. Il presente
lavoro è un'ulteriore indagine sia sulla situazione termica che sul popolamento fito e zoo planctonico.

METODOLOGIA

La ricerca è stata svolta dal Gennaio 1969 all'Agosto 1977 per un totale di 28 sopralluoghi aventi per due anni una periodicità almeno mensile ed in seguito maggiormente distanziati. Il rilievo della temperatura ed i prelievi di plancton sono stati effettuati in due stazioni: la prima — Molina — situata proprio di fronte alla galleria, e la seconda — Pieve — nella zona più lontana da questa nell'intento di evidenziare un'area maggiormente influenzata dal Garda rispetto ad un'altra influenzata il meno possibile. La

temperatura è stata misurata con termistor della L.R.E. di Milano e con due termometri a rovesciamento. Il fitoplancton è stato prelevato con bottiglie di plastica tipo Van Dorn; lo zooplancton con pescate verticali frazionate con rete a 44 maglie per centimetro fino al 9.8.1969 e successivamente con rete a 69 maglie per centimetro. Il conteggio è stato effettuato per campionamento: solo in alcuni casi è stata fatta la conta totale; in tal caso i risultati sono indicati con un asterisco (*).

RISULTATI

Nella tabella I sono riportate le variazioni di livello delle quali si deve tener conto necessariamente nell'analisi dei risultati: il livello è stato letto direttamente sull'asta graduata situata sulla verticale della bocca della galleria di collegamento con il Garda. Come si vede il lago raggiunge i massimi livelli nel periodo estivo-autunnale, approssimativamente da Giugno-Luglio fino ad Ottobre, talvolta anche oltre: questi massimi sono da mettere in rapporto con i ridotti bisogni di energia nel periodo estivo, nonché con le richieste della popolazione rivierasca del lago di Ledro, interessata al turismo in questa stagione, che il livello sia il massimo possibile. I minimi sono caratteristici dei mesi invernali — da Gennaio ad Aprile — con una variazione rispetto ai massimi di circa 18 metri. I mesi durante i quali la pompa funziona con ritmo notevole per «riempire» il lago di Ledro con acqua del Garda, sono Maggio e Giugno, mentre una volta raggiunto il massimo livello questo viene mantenuto senza nuove immissioni, impedendo di solito che entri in attività il vecchio sfioratore qualora il livello del lago dovesse salire a causa dell'apporto di acqua piovana. Un piccolo apporto di acqua dal Garda può avvenire anche durante il periodo invernale, poiché la pompa entra in funzione durante i giorni festivi allorché la centrale di Riva è inattiva per la minor richiesta di energia.

Temperatura

I dati sono riportati nella tabella 1. Nelle singole colonne è stata inserita una freccia la quale indica la profondità della galleria, profondità che variava con il variare del livello.

Dall'esame della tabella si può constatare che non vi sono differenze tra i valori misurati nella stazione di Molina e in quella di Pieve nei mesi invernali, durante i quali d'altra parte non vi sono immissioni dal Garda, ma anzi l'acqua viene emunta tramite la galleria. È evidente la presenza di isotermia e di un rimescolamento delle acque fino alla massima profondità. (Sono state saltuariamente effettuate delle misurazioni dell'ossigeno con il metodo Winkler: i risultati sono in accordo con la termica del lago). Anche

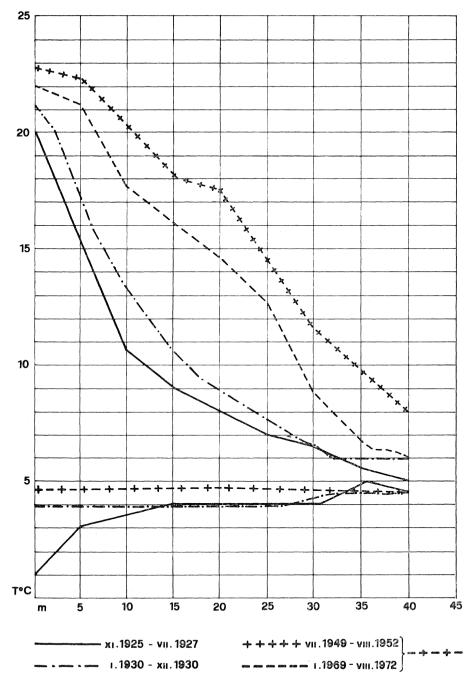
TABELLA 1 - TEMPERATURA DELLE ACQUE IN °C

P = Pieve di Ledro; M = Molina di Ledro. C = al centro del lago.

Prof.	21	69 69	26	3.2		23.3	1	20	.4	25	5.5	16.	6	12	.7	9.8	В	13.	9	13.	10
metri	P	M	Р	М		Р	М	Р	М	Р	М	Р	М	Р	М	Р	М	Р	М	P	М
0	5	5	4,7	4,7		6,5	6	8	8	17	16,7	17,5	17,5	18,5	18,5	22	22	1 9	19	16,5	16,5
5	5	5	4,7	4,7		6	5,7	7,5	7,5	15	15	17	17	18	18	21	21	18,5	18,5	16,5	16,5
10	5	5	4.7	4,7	>	5,7	5,5	7	7	11	11	15	14	15,5	15,5	17	17	17,5	17	16,5	16,5
15	5	5	4,7	4,7	!	5,7	5	6,7	6,7	7	7,7	▶ 12	12	12,5	14	14	14	16	16	16	16
20	5	5	4,7	4,7	١.	4,7	4,7	6	6	5,7	6,5	9	8	D ₁₀	11	12	12	13,5	13,5	14,5	14,5
25	5	5	4,2	4,2		4,7	4,5	5,5	5,5	5,5	5,7	6	6	7	7,5	⊳ 8	9	D 11	10	D 11,5	12,5
30	5	5	4,2	4,2								5,5	5,5	6	6	6	6,4	7	8	8	8,5
35	5	5	4,2	4,2										5,7	5,7	5,7	5,5	6	6,7	6,7	6,5
40														}		5,7		6,7	6	5,7	5,7
45																					
Livello metri	4	5	4	1		37,5	5	34	,5		40	43		4	7	52	:	53	,	52,	5

durante i mesi estivi non vi sono differenze di temperatura fra le due stazioni e d'altra parte in questa stagione l'immissione di acqua dal Garda è ormai cessata dal momento che è stato raggiunto il massimo livello. Le differenze più significative dovrebbero essere peculiari dei mesi di Aprile, Maggio e Giugno proprio in conseguenza dell'immissione d'acqua dal Garda. Dalla tabella però non risulta un fenomeno del genere nemmeno in questi mesi: solo nel prelievo del 12.7.69 si manifesta una modesta differenza a vantaggio della stazione di Molina per le acque sovrastanti la bocca della galleria: è da attendersi infatti che le acque del Garda, prelevate in superficie, siano più calde di quelle del Lago di Ledro a 20-25 metri di profondità e tendono a risalire per raggiungere lo strato di isodensità riscaldando la massa d'acqua attraversata (Tonolli, 1960). Per quanto riguarda le acque profonde, al di sotto della bocca della galleria, si possono notare piccoli sfasamenti fra le temperature delle due stazioni, sfasamenti da considerarsi occasionali e non molto interessanti: talvolta infatti la temperatura è più elevata a Molina (25.5.69, 12.7.69, 11.10.69) e talvolta lo è a Pieve (16.6.69. 9.8.69, 13.6.70). Non deve essere scartata inoltre la possibilità che al lago arrivi acqua infiltratasi nel terreno nel letto dei torrenti diretti verso lo specchio d'acqua: è il caso del Tiarno proprio durante i mesi estivi. Non sono state identificate sorgenti sub-lacustri, ma da notizie assunte presso le popolazioni locali, pare che nelle annate particolarmente fredde allorché il lago gelava, l'ultima parte a solidificarsi ovvero l'unica a non farlo era quella vicino a Pieve, indice questo di sorgenti sublacustri di acqua a temperatura più elevata.

Nel citato lavoro di Tonolli è stata fatta una comparazione tra le escursioni termiche di tre periodi: è stato possibile inserirne una quarta inerente al periodo Gennaio 69 - Agosto 72 (fig. 1). Come si può vedere mentre la


1	.11	9.1	2	2.1.	1970		21, 2	2		5.4		1.5	5	13	.6		25.	7	19.3	. 1972	8.8	3	2	20.11.	1975
P	М	С	;	Р	М	L	Р	М	P		М	Р	М	Р	М	L	Р	М	Р	М	Р	М		P	М
13,7	14	9		6	6		4,7	4,7	5	,7 5	5,7	9,7	9,7	20	20		20,5	20,5	7	7	19,5	19,5		10	10
13,7	14	9		6	6		4,7	4,7	5	,7 5	5,7	9,5	9,5	15	15		19	20	7	6,5	19	19		10	10
13,7	14	9		6	6		4,7	4,7	> 5	,7 5	5,7	▶ 9	9	12	12		15,5	15	6,2 D	6,2	15	15		10	10
13,7	14	9		6	6	⊳	4,7	4,7	5	,6 5	5,6	6,2	6,2	10,5	10,5		12	13	6	6	12,5	12,5		10	10
13,7	13,7	9	.	6	6		4,7	4,7	5	,5 5	5,5	5,7	5,7	9	9		10,5	11	5,5	4,5	9,5	9,5	⊳	9	9
11,5	11,5	⊳ 9	,	6	6		4,7	4,7	5	,5 5	5,5	5,5	5,5	7,5	7	⊳	9	9	5,5	5,5	6,5	6,5		8,5	8,5
8	8	9	.	6	6		4,7	4,7	5	5	5			7	6		7,2	7	5,5	5,5	5,7	5,7		7	7
6,5	6,7	6	,5	6	6		4,7	4,7						6,2	5,7		6,5	6,5			5,5	5,5		6,5	6,5
5.7	6	6		5,7	5,7									5,8	5,7		6,2	6,5							
5,7		5	,7														6								
5	i2	5	2	50	0,8		43			38		38,	5	49	,3		52,	7	40	,6	52	2		48	3

minima coincide esattamente con quella inerente al periodo 49-52, la massima è alquanto inferiore, soprattutto per le acque ipolimniche. Le spiegazioni di questi valori più bassi, ma comunque pur sempre superiori a quelli delle misure precedenti (1927 e 1930) possono essere diverse. Per quanto riguarda l'epilimnio, considerando esatta l'ipotesi di Tonolli di un riscaldamento dovuto all'immissione delle acque superficiali del Garda, deve essere fatto un rapporto fra la quantità d'acqua pompata ed il periodo del prelievo dal Benaco: basterebbe infatti un inizio anticipato della operazione per provocare un minor riscaldamento delle acque del Ledro. D'altra parte bisogna tener conto dell'andamento stagionale che può influenzare la temperatura delle acque superficiali del Garda. L'andamento stagionale può anche essere invocato per il riscaldamento dell'ipolimnio del lago di Ledro, sempre tenendo valida l'ipotesi di Tonolli che questo riscaldamento avvenga almeno in parte ad opera degli immissari superficiali o sublacustri. È chiaro che ad una annata fredda nel periodo tarda primavera inizio estate, corrisponderà una temperatura generalmente più bassa delle acque del lago di Ledro nel loro complesso.

Zooplancton

Sono state effettuate due pescate per ogni stazione: la prima dal fondo ¹ a 20 metri di profondità e la seconda dai 20 metri alla superficie. Quando pero il livello del lago era molto basso è stato fatto un unico prelievo

¹ Quando le acque raggiungono il livello massimo, il fondo, sia per la stazione di Pieve che per quella di Molina, si trova a circa 40 metri di profondità.

per ciascuna stazione (indicato con Ø). Il conteggio dei Rotiferi è iniziato con l'uso della rete a 69 maglie per centimetro e cioè il 13.9.1969.

La popolazione degli Entomostraci negli anni 1930-34 in base ai prelievi del Largaiolli (1931) e di Rina Monti (1930 e 34) era costituita soprattutto da Cyclops strenuus. Diaphanosoma e Bosmina: presenti inoltre piuttosto raramente Daphnia. Eudiaptomus steueri e Mesocyclops leuckarti. Nel 1949 la variazione più notevole era la sostituzione della Bosmina con la Daphnia, Iniziata l'immissione dell'acqua del Garda nel Ledro, l'effetto più notevole constatato da Tonolli è stato l'aumento cospicuo dell'Eudiaptomus steueri e la riduzione della Daphnia e del Cyclops strenuus. Le tabelle 2 e 3 riportano la situazione nel periodo 1969-1977. Per l'Eudiaptomus steuri si può notare la presenza costante e numerosa fino al Novembre 1969, dopodiché avviene una forte diminuzione fino al Luglio 1970: in seguito ricompare e permane fino a Maggio del 1972 pur non raggiungendo più i valori antecedenti. Nel 1974, nel 1975, ma soprattutto nel 1977 lo Eudiantomus steueri è nuovamente molto abbondante. È specie peculiare delle acque superficiali. Il Cyclops strenuus è presente in numero vicino a quello indicato da Tonolli nel 1950-52: si ritrova frequentemente nelle acque profonde soprattutto nei mesi freddi. Il Mesocyclops leuckarti è presente in numero limitato tutto l'anno: un massimo si è verificato proprio quando nelle acque superficiali era assente il Cyclops strenuus.

Alquanto limitata la *Bosmina* presente tuttavia in ogni periodo dell'anno e con variazioni numeriche difficili da spiegare. In linea di massima è stata ritrovata in quantità maggiore a Molina rispetto a Pieve; assolutamente eccezionale la sua presenza, nelle acque profonde nell'Agosto 1977.

La Daphnia è anch'essa presente senza però raggiungere quasi mai i livelli del 1949, ma piuttosto vicina alle concentrazioni del 1950. Molto notevole tuttavia la sua presenza nel prelievo del 1977. Sia la Daphnia che la Bosmina hanno avuto una forte flessione dal Dicembre 1969 al Giugno 1970.

Saltuaria la presenza del *Diaphanosoma*: fra Agosto e Novembre 1969, nel 1975 e nel 1977. Sembra tuttavia che tale specie, proveniente dal Garda. non riesca ad adattarsi all'ambiente del lago di Ledro.

Sono presenti nelle acque Leptodora e Bytotrephes che non erano mai stati rinvenuti nei prelievi precedenti. Questi Cladoceri sono giunti nelle acque del Ledro superando la fase critica del passaggio attraverso la galleria. Si rinvengono, come di regola, nel periodo estivo. Si può ritenere a questo punto che si siano ambientati nel nuovo habitat; cioè la loro presenza non può ascriversi ogni anno ad una nuova immissione dal Garda dove tra l'altro la loro comparsa stagionale è in Giugno. (Casellato-Duzin, 1974).

Fig. 1 - Escursioni termiche annuali alle diverse profondità nel lago di Ledro nei periodi Novembre 1925 - Luglio 1927; Gennaio 1930 - Dicembre 1930; Luglio 1949 -Agosto 1952; Gennaio 1969 - Agosto 1972 (da Tonolli modificato).

TABELLA 2 - DENSITA' (NUMERO DI INDIVIDUI / m3) DELLA POPOLAZIONE ZOOPLANCTONICA NELLO STRATO COMPRESO TRA LA SUPERFICIE E I -20 m.

ZOOPLANCTON		.1969	28	.2	23.	3 Ø	20.4	4 Ø	25.5	5 Ø	16	6.6	12	.7	9.	8	13	3.9	11.	10	1.	11
ZOOTBANCION	P*	М	Р	M*	Р	М	Р	М	Р	М	Р	М	Р	М	Р	М	Р	М	Р	М	Р	М
Eudiaptomus steueri d	144	611	620	149	1000	747	158	183	487	855	650	2250	3132	2892	1944	2472	1429	822	1055	165	829	1
и и Ф	86	700	450	106	673	339	136	222	366	622	590	1400	3524	2412	2120	3672	635	943	1021	156	404	4
" " Q ov.	106	388	260	90	365	213	170	205	183	200	330	575	1248	528	1800	552	295	226	434	92	205	2
" " iuv.	863	2288	1910	590	2371	1359	666	897	2016	1255	1260	6338	1620	3224	3296	7368	816	1028	919	241	709	13
Cyclops strenuus o	5	100		5	38	9	25	89	156	355	150	175		72			578				21	
и и ф	4	22		5	6	9	25	21	35	55	50	38									14	
" " φ ov.		22			6			21	30	44	20	25		12							14	
u u iuv.	40	288	30	2	144	87	55	205	162	355	200	212	36	95	36	24			8		23	:
Mesocyclops leuckarti đ	1	56			19	9	12	98	6		40	162	84	7 56	264	312		70	8	7	120	;
" " \$	14	66		3	6		12	29	12		10	62		348	48	256	124	99	314	35	134	14
" " ov.										11			36	204	36	180	34	63	68	28	14	
# # iuv.	42	188	20	12	262	184	58	205	72		130	400	96	264	132	156	556	312	757	234	333	28
Naupli	244	800	1000	280	1710	1359	750	688	981	88	190	1125	648	1260	1164	828	1690	1219	1974	751	3656	315
Totale Copepodi	1550	52 3 9	5077	1242	6570	4411	2087	2863	4507	3851	3620	12762	10524	12056	10852	15820	6157	4782	5558	1709	5596	50 c
Daphnia longispina	486	944	1100	234	89	349	222	119	805	8422	6150	6745	4140	1008	552	648	260	354	331	475	794	35
# # 0V•	22	200	30	9	12	19	8	4	96	866	570	100	588	72	60	24		7	17	35	56	10
Daphnie piccole	65	88		3		9		21	17	444	830	88	684	60	120	204		14	34	35	127	
Daphnia hyalina galeata																						
Bosmina longirostris	55	155	180	54	275	262	230	209	215	100	- 6	125					45	7	25		14	
# # ov.		1	100							11	-						1					
Diaphanosoma brachyurum							4								95		238	1200	1896	1600	858	163
" " ov.																			8	14	14	
Leptodora kindti														36	156	216	34	14	17	21	63	
Bythotrephes longimanus														24	24	36	22	42	25	14		7
Totale Cladoceri	528	1387	1410	300	376	639	460	353	1135	9843	7562	7058	-5412	1200	1008	1148	599	1638	2353	2194	1926	215
Asplanchna priodonta													2904	96 7 2	120	96	3982	4664	153	56	56	
Kellicottia longispina																	2734	3110	127	212	2113	418
Keratella quadrata																	7818	10184	314	645	255	106
Keratella cochlearis																	590	680	306	312	560	886
Filinia longiseta																					70	7
Polyarthra vulgaris																					148	120

1127 5418

588 595

2290 78

306

Synchaeta pectinata

Conochilus unicornis

Brachionus quadridentatus

9.12 C	2.1.15 P	970 M	21.2Ø C	5.4 P	4 M	P 1.	5 M	13. P	6 M	25 P	.7 M	29.8 C	22.7 P	.1971 M	P 6.	10 M	19.3 P	1.1972 M	10.5 P	ø M	P 8.	8 M	31.8 1974 C	8.8 1975 C	20.11 C	8.8 1977 C
21	56	42								143	100	74	92		85	53	78	390	17	57	4085	652	1177	220	283	4042
7	7	7								75	42	53	70		113	95	191	127		22	1276	326	1063	28	424	2829
14										65	14	10	56	7	21	106	70	42		13	630	177	600	28	212	1191
92	56	70	15							103		63	92	28	1453	765	645	390	53	159	411	191	2260	227	537	4234
21	116	99	51	63	92	182	286	113	113	560	439	255	14	359	7		21	31	22	22	99	446	567	326	56	85
	21		3	7	7	50	42	7		56	42	63	7	70	7	10				13	56	35	28	56	28	21
			15			62	42	56		65	99	21		21	14				22	39		10	28	42		21
255	135	191	55	49	1.40	821	1049	134	184	1440	978	276	14	290	42	53	255	312	53	40	723	1106	737	921	580	361
35	14	7	3	21		31	42			212	156	42	191	99	21	31		35			14	56	56	210	99	85
70	7		11	7						202	212	42	156	35	56	10		20			28		14	126	127	21
										65	113	31	56	49				14		8	14		14			
198	177	148	56	99	156	206	297			1273		585	773	570	1319	744	113	141	8	39	1205	205	70	921	764	106
397	375	456	291	702	319	380	340	496		1480		1893	539	276	404	308	446	248	256	296		1085	3461	4000	1528	893
1110	964		510	947	714	1752	2098	806		5839		3408	2060		3542		1819	1754	431		11306		10075	7105	4638	13868
56	21	14	23		14			14	113	2065		712	929	325	404	842		35	8	92	1092		6652	680	368	8255
	7							7		27	70		14	28		10		_		8	56	70		346	42	63
		7							28	184	595		56	140		10		7		4	70	14	350	350 1442	42	106
						1	14	63	382	19	85		14		FOF	3680	7	510	8	238	56	70	269	1446	84	744
21	14	21	11				1-4	0.5	14	13	٥		1-7		252	10	,	710		230	42	70	14		0.4	/
7									, ,			10			7	74					7-				84	85
'															ĺ											
		7								35	70	21	14	14	7	7					99	49	1			42
		·										10			7	7						7	1			
84	42	49	34	_	14	1	14	84	537	2330	3444	753	1027	508	1020	4640	7	552	16	342	1415	2841	7287	2818	620	9295
163	773	673	173	645	560	8128	6212	28	184	56	28	10			170	- 85	56	56	424	1327	368	14	1858		2885	85
1254	2652	2829	2940	5700	4829	11830	13049	2885	3503	301	6380	1478	7	49	106	351	3787	6439	10336	17787	1801	3177	453	1842	2923	
390	1148	1319	795	2191	1822	9900	8085	162	553	1716	4241	10297	241	609	503	691	1234	822	1699	6991	553	968	1404	900	821	127
361	588	686	511	723	780	2012	1645	659	1276	433	2595	7276	148	148	120	202	1546	1304	7469	15044	2723	7074	922	3744	7222	85
	14	21	7	28	56	215	255			9	42		21	70			3092	4964	6371	31681						
1226	3177	3900	3	290	170	6310	8482	2439	1617				21				212	198	1132	5132	411	372	964	1248	420	
	446	326				1700	1673		14		42	106			716	2436	539	992	424	1592	723	421	640	297	2006	106
		7	7	7	14		56	269	255	84	652								814	442					233	
													7	106			4411 .	34836								

TABELLA 3 - DENSITA' (NUMERO DI INDIVIDUI / m^3) DELLA POPOLAZIONE ZOOPLANCTONICA NELLO STRATO COMPRESO TRA I -20 m E I -40 m (CIRCA).

NELLO STRATO COMPRESO							12	7		.8	10	.9	11.	10	1.	11	9.12
ZOOPLANCTON	26.1.1 P	M*		3,2 M*		6 _ M *		./ M*		.о М*		.9 М	Ρ".	M	Р'	M*	C
Eudiaptomus steueri o	42	55	2	1028	2	7	30	31	21	23		75		4	39		1
и и ф	31	47	17	198	3	2	44	53	54	18	1				5	1	
" º º ov.	18	27		289			12	9	11	5					10		
" " iuv.	192	223	33	1600	2	14	32	40	62	14		50	7	8	17		4
Cyclops strenuus ♂	13	17	2	43	16	18	23	25	32	14	112	129	170	17	5	31	8
и и Ф	2	7		7	2	22	3	4	17	17	15		85	4	.5	10	4
" º ov.	4	6			27	50	34	21	41	29	37	44	73	25	17	3 6	10
" iuv.	66	52	12	142	14	30	60	49	116	80	122	138	153	12	39	44	23
Mesocyclops leuckarti ♂	1	5		25		2			8			6	17		5	8	
и и Ф	8	14	5	7				1					45		10	26	1
n n ov.												12					
" iuv.	66	50	12	50	5	7	6	- 9	15	1		12	266	29	39	98	13
Naupli	78	64	53	1214	183	91	210	152	227	104	18	192	1378	153	385	203	160
Totale Copepodi	521	567	136	4603	254	243	454	394	604	305	305	658	2194	252	576	457	222
Daphnia longispina	41	75	20	711	466	35	60	65	445	72	118	327	68	29	45	63	2
n n ov.		1			48	3		4	109	18	6	6		17		19	
Daphnie piccole	8	7		38	164	3		2	73	18	3	18			10	8	
Daphnia hyalina galeata																	
Bosmina longirostris	5	7	2	66	2	5				6	2		5	4	10	7	1
" ov.											2						
Diaphanosoma brachyurum		1									1	12	11		10	1	2
" ov.													8		5		
Leptodora kindti									2		1				5		
Bythotrephes longimanus									1								
Totale Cladoceri	54	91	22	815	680	46	60	71	631	114	133	363	111	50	85	98	5
Asplanchna priodonta												69		4	1	1	3
Kellicottia longispina											18	1366	902	1140	1645	473	125
Keratella quadrata											13	982	243	595	153	40	5
Keratella cochlearis											3	132	17	29	96	3	1
Filinia longiseta												25	28	38	56	73	18
Polyarthra vulgaris			-														24
Synchaeta pectinata																	1
Conochilus unicornis															187	5	
Brachionus quadridentatus																	

21. P	1,1970 M	P	5.4 M	1. P	5 M	13 P	.6 M	25 P*		29.8 C		7.1971 M *	6. P *	10 M *		3.1972 M	8. P	8 M	31.8.74 C	8.8.75 C	20.11 C	8.8.77 C
2	.7							1		29		2		4		42	228		42		14	226
	7							2					6		1	28	79		11		14	269
								1						2			69	10	42		14	241
3	7							1			2		. 6		5	141	19		11		21	14
10	297	172	113	44	11	23	163	7	18	164	59	14	126	67	1	183	347	56	127	158	7	86
2	60				2	17	70	9	11	67	12	9	12	1	1	42	148	49	11	68	7	21
1	95			6	13	34	148		24	77	31	12	36		1	70	188	63	11	56		21
30	269	125	37	18	19	17	78	295	44	745	55	31	360	7	6	225	1171	276	600	240	162	524
	56							7		29	3.	2			6	141	79			34		
	92	15			2			2		9	1		6	3	3	141		7	21			
											1											
6	117	424	150		3			77		. 174	28	8	156	62	15	155	228	21	63	56		
319	209	1884	565		3		7	71.	488		65		120	53		84	2800	638	454	400	205	212
373	1216	2620	865	68	53	91	466	473	588	-	257	131	828	200	51	1013	5356 ,		1393	1012	444	1614
3	24	31	26				7	56	6	445	131	24	1134	22		141	139	21	1178	124	42	1617
2	17							1	1	14	55	2	18			282	9			113		42
	7							7	б	19	34	8		1			9		21	48		170
	_				2		7	1	16		3	3	54	122			287	113	7 65	45 34	70	3049
7	7				2		,	'	10		"	3	74	1			207	113	/65	34	/0	3049
'																						
								7		9			1								-	
														-								
13	55	31	26		2		14	72	29	487	223	37	1207	145		423	444	134	2729	364	112	4878
54	10	30	113	18	25				1					7				7	126		318	1
79	152	1193	3077	44	80	123	205	53	185	764	1	1.	78	32	34	1057	15319	2709	1095	758	445	
25	39	1130	1193	62	33	4	14	185	807	2545	200	832	66	160	46	395	506	248	326	1053	49	127
8	7	204	138	21	11	3	56	90	182	619	7.	8	12	12	6	141	585	326	42	181	380	
	17	15	37						63	38	17	293	24	6	22	761	69	92	21		14	28
168	17	31	125		45							.8			2		49	14	84	32	56	
19				2	22			9	1	9	3	14	216	145	12	42	49		405		42	
								10	82												573	
											2	27			8	1367						

Le prime notizie abbastanza complete sulla popolazione dei Rotiferi si possono avere dai prelievi di Tonolli: oltre a quanto pubblicato ho potuto esaminare le tabelle relative ai prelievi effettuati negli anni 1949-52 e conservate negli archivi dell'Istituto di Idrobiologia di Pallanza. Nel suddetto periodo risultavano presenti certamente Asplancna, con una notevole riduzione di numero dal 1949 al 1952, Keratella coclearis, Filinia longiseta (in aumento), Kellicotia longispina e Conochilus. Presenti saltuariamente e in numero sempre ridotto Keratella quadrata e Pedalia. La Polyathra dopo il 1949 non era stata più ritrovata.

Nel periodo 1969-77 risultano presenti costantemente Asplancna, Kellicotia, Keratella quadrata, Keratella coclearis; quasi sempre presente Filinia (soprattutto nel 1972) facilmente rinvenibile in acque profonde, e Polyathra; dal 1971 Sinchaeta e Conochilus. Appare molto evidente dall'esame della tabella una flessione dei Rotiferi nel 1971.

Volendo fare un confronto fra le popolazioni zooplanctoniche delle due stazioni si può affermare con una certa cautela che, per le acque comprese fra i 20 metri di profondità e la superficie, l'andamento segue le previsioni cioè che quando vi è immissione di acqua dal Garda l'area di Molina, vicino allo sbocco della galleria, è complessivamente più ricca (medie di Maggio, Giugno e Luglio). È interessante anche constatare che di solito non si tratta di maggior presenza di una sola specie, ma di quasi tutte le specie identificate. È mia opinione tuttavia che tale difformità sia di breve durata e che la popolazione zooplanctonica si distribuisca in maniera uniforme rapidamente in tutto il lago. Nel periodo autunnale viceversa — Ottobre, Novembre — l'area di Pieve è più popolata e questo è difficilmente interpretabile data la costanza del livello delle acque e l'identica temperatura nelle due stazioni.

Fitoplancton

Ho scarse informazioni inerenti al fitoplancton nel lago di Ledro sia prima che dopo la sua connessione idraulica col Garda. Ho potuto avere qualche notizia sempre presso l'Istituto di Idrobiologia di Pallanza, perché allorquando vennero fatti i prelievi per lo zooplancton in tre occasioni fu esaminato il fitoplancton catturato con la rete. Particolarmente interessanti le notizie che si possono avere dal prelievo del 5.7.1949 allorché non era ancora iniziato il pompaggio dell'acqua dal lago di Garda e quindi il popolamento fitoplanctonico risultava tipico del lago di Ledro. Erano presenti Oscillatoria, Dynobrion, Ceratium, Chlorella, Synedra, Eudorina, Asterionella e Nitschia. Le tabelle 4 e 5 riportano i dati inerenti ai prelievi effettuati dal 1969 al 1977 nella zona di Pieve. Sono presenti quasi sempre Rodomonas

minuta e Rodomonas lacustris, Fragilaria, Asterionella e Synedra con scarse differenze tra le acque superficiali e quelle a 5 metri di profondità: le Diatomee sono più abbondanti a questo livello. Anche Ceratium è facilmente rinvenibile sia pure in numero ridotto. Presenza saltuaria di Oocystis, Sphaerocystis, Mougeotia e Cosmarium.

Sulla presenza di Oscillatoria rubescens D.C.

L'Oscillatoria rubescens è considerata generalmente un'alga tipica di laghi eutrofizzati e la sua comparsa o il suo sviluppo violento, come pure quello di altre Cianoficee, sono ritenuti indice di variazioni trofiche di un lago.

Identificata in Italia per la prima volta dal Largaiolli (1902) nel lago di Caldonazzo, è stata successivamente ritrovata in molti altri bacini dell'Italia settentrionale e della Svizzera: in particolare nel lago di Lugano, nei laghi Maggiore e di Mergozzo (Baldi, Tonolli-Pirocchi 1953), nei laghi trentini (Marchesoni 1948). Sono state formulate varie ipotesi sulle fluttuazioni stagionali di questa alga: risulta più abbondante nei periodi freddi (Marchesoni, Ravera 1968). Come già si è accennato pare che la sua presenza sia da mettere in relazione con l'eutrofizzazione del lago, sia di origine artificiale che naturale, della quale tuttavia essa finisce con l'essere concausa (Minder) sovraccaricando le acque di sostanze organiche e contribuendo quindi alla riduzione dell'ossigeno. Più difficili da interpretare sono le variazioni di livello giornaliere o plurigiornaliere che si sono verificate con una certa frequenza in vari laghi.

La situazione del lago di Ledro risulta dall'esame delle tabelle 4 e 5: l'Oscillatoria rubescens si è manifestata subito all'inizio della ricerca anche se in quantità molto modeste. Come già detto questa alga era presente ancora prima della connessione del lago di Ledro con il Garda, in accordo del resto con la sua presenza in altri laghi trentini. Secondo alcuni degli autori già citati l'Oscillatoria rubescens è presente spesso a profondità variabile dai 10 ai 20 metri in rapporto con la diversa trasparenza delle acque. Nel lago di Ledro i prelievi di fitoplancton sono stati fatti in superficie e a 5 metri di profondità; però l'eventuale presenza dell'Oscillatoria a profondità maggiori è stata sempre controllata con la rete usata per il prelievo dello zooplancton: solo in due occasioni (Agosto 1975 e Agosto 1977) è risultata quasi assente nei due prelievi superficiali essendo localizzata rispettivamente sui 10 e sui 20 metri di profondità; nei prelievi del Novembre 1975 e dell'Agosto 1977 è stata usata la bottiglia per il fitoplancton alle profondità dove risultava presente l'Oscillatoria. Osservando le tabelle 4 e 5 si nota uno sviluppo violento di questa Cianoficea dall'Ottobre del 1969 al Giugno del 1970; in seguito diminuisce per ricomparire abbondantemente nel 1972 e poi nel 1975 e nel 1977, anni questi ultimi però nei quali i prelievi sono stati molto ridotti.

Non è facile dare una interpretazione a queste fluttuazioni quantitative dell'Oscillatoria rubescens, essendo esse legate a vari fattori: volendo però

TABELLA 4 - DENSITA' (NUMERO DI CELLULE / 10 ml) DELLA POPOLAZIONE FITOPLANCTONICA IN SUPERPICIE.

FITOPLANCTON	26.1 1969	28.2	23.3	20.4	25.5	16.6	12.7	9.8	13.9	11.10	1.11
Oscillatoria rubescens	Р	P	P	P	P	P	P	P	P	104000	101180
Rodomonas minuta	548	1460	1116	605	5228	1580	933	2970	1418	2756	1719
# lacustris						50	176	203	135	52	52
Dinobryon sociale var. americanum			P	P	2628	3	330	67	10300	210	P
" divergens				P	P		P	P	7023	310	104
Ceratium hirundinella					P	22	110	67	P		P
Gimnodynium sp.											
Peridinium bipes steini					9 .						
Ankistrodesmus falcatus	92	132	360	907	1584	2175	2992	1135	2310	26	
Cosmarium sp.	16	8	108	64		P					
Scenedesmus bigregatus	200	180	1692	4010	7524	107	1012	135	270	182	52
Closterium aciculare										26	26
Mougeotia sp.				810							
Tabellaria flocculosa	Р		P	P	P				67		
Sphaerocyjstis schröteri			P	P		50	P			52	P
Oocystis lacustris							1073		540	78	Р
Crucigenia rectangularis							2442				
Dactilopsis sp.						50	132				
Nephrocytium agardianum											
Ciclotella comensis	16										
Fragilaria crotonensis	2064	3224	7236	1350	1656	205	1675		P	2002	1833
Asterionella formosa	2080	144	72	150	144	20			270	52	78
Synedra acus	P	P	P	P	P	P			P		.P
Achnantes minutissima											
Trasparenza metri	4	б	6	4,5	2,5	8	6	6	5	5	4

9 . 12	2.1 1970	21.2	5.4	1.5	13.6	25.7	29.8	22.7 1971	6.10	19.3 1972	8.8	31.8 1974	8.8 1975	20.11	8.8 1977
222053	487440	148320	193130	265148	39160	P	P	P	4780	10680	Р	Р		103840	Р
728	1512	598	3887	5104	Р	1100	338	785	1630	107	528	2112	3784	1628	3496
45	144	52	209	1026	88	308	182	P	1050		1156	396	132	440	
			,		436480	44	24	92	1080				6028		
												P	P		285
	P		P			88	78	323	25		6	44	44	P	20
			89												
						44									
					176	1716	26	601	1200		748	660	660	352	893
										-				P	57
															-
	P		P			P	P				Р				
			P	176		P					P	P			
	P	0.5	225			000	4504	185	4790		P	1584 396	528	P	
		26	335		44	220	4524	100			•	390) ₂ 0		
			^											P	
				88					10550				1232	1276	
	144	52	2002	3828	44	P	9264			2079	2112	3960	88	4224	
312	72	52	62 7	396			P		362	5847	1496		P	1408	
45	P	26	836	748	31548	P	P	231		240	P			. Р	
										187					
4	5	5	4	2	2	4	4	5	8	7	6,5	8	4	5,5	3

TABELLA 5 - DENSITA' (NUMERO DI CELLULE / 10 ml) DELLA POPOLAZIONE FITOPLANCTONICA ALLA PROFONDITA' DI 5 m.

8.2 23	3.3		05.5						
	0.5	20.4	25.5	16.6	12.7	9.8	13.9	11.10	1.11
P	P	P	P	P	P	P	P	59168	30111
566 7	115	432	2812	418	1800	792	1643	1940	1066
	l					144	110		27
	Р	P	2740	P	150	96	4105	450	P
		P	P		140	48	7090	112,2	27
			P	5	33	216	P		P
	- 1				16				
40 1	80	1224	214	1043	3030	720	3161	104	
13	10	72							
100	85	4104	4440	30	250	432			
	2								
- 1	- 1								
-	Р	P	P						
	Р	P			P		331		110
					440	144	165	52	P
					5560		884		
				2	65				
2	7								
503 50	30	7524	2812	410	2560	P	663		1960
181	30	1080	444				P		82
P :	P	P	Р	P			Р		27
						P			
6	6	4,5	2,5	8	б	6	5	4,5	4
1	2 2 3 5C	40 180 13 10 85 2 P P P 2 2 03 5030 81 30 P P	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P P P P P	66 715 432 2812 418 P P 2740 P P P A0 180 1224 214 1043 13 10 72 00 85 4104 4440 30 2 P P P P P 2 2 2 2 2 3 5030 7524 2812 410 81 30 1080 444 P P P P	66 715 432 2812 418 1800 P P P 2740 P 150 P P P 140 40 180 1224 214 1043 3030 13 10 72 00 85 4104 4440 30 250 2 P P P P P P P 440 5560 2 65	66 715 432 2812 418 1800 792 144 P P P 2740 P 150 96 P P P 140 48 40 180 1224 214 1043 3030 720 13 10 72 00 85 4104 4440 30 250 432 2 P P P P 440 144 5560 2 65 2 2 3 5030 7524 2812 410 2560 P 81 30 1080 444 P P P P P	66 715 432 2812 418 1800 792 1643 144 110 P P P 2740 P 150 96 4105 P P P 140 48 7090 P 5 33 216 P 16 16 16 16 16 16 16 16 16 16 16 16 16	66 715 432 2812 418 1800 792 1643 1940 P P 2740 P 150 96 4105 450 P P P 150 33 216 P 160 160 1122 P 5 33 216 P 160 160 1122 40 180 1224 214 1043 3030 720 3161 104 30 85 4104 4440 30 250 432 P P P P P P P P P P P P P P P P P P P

	2.1 1970	21.2	5.4	13.6	25.7	6.10 1971	19.3 1972	8.8	31.8 1974	8.8 1975	20 -5 m	.11 10 m	8. -5m	8.1977 -20 m
	109500	244647	207316	530862	164120		8000				143000	95040	P	17480
	1508	746	3094	103	2200	720	347	1930	352	152	2068	P	P	931
	52	26	125	165		270	107	440	88	484	924	P		
				130425	660	450		836		6688				
								P	40	P		1	475	P
	Р		41		44	45		14	6	44	P	P	57	19
												L	Р	P
				103		90		1892	836		352	440	475	1473
											P			
			P		P			220						
	-		83		P									
	P	- 53			4224	7290		1540	704	176	P	6160		
			88	207	151				264	484				
									48					
				-				352			P			
+												1.10		
					_	12635				1012	528	1496	P	418
	678	26	2663		P		1842	2112	96	352	5270	4224 1408	"	410
	P	266	334	40450			4619		2552	352	1408	1400		
	P	53	543	18150	P				2002					
												<u> </u>		
	5	5	4	2	4	8	7	6,5	8	4	5,	5		3

considerare questa alga indice di fenomeni di eutrofizzazione viene spontaneo pensare che le variate caratteristiche fisico-chimiche del lago di Ledro dovute all'immissione delle acque del Garda, ne abbiano favorito lo sviluppo. Bisogna anche ricordare che la galleria di prelievo dal Garda inizia vicino a Riva dove si può ritenere che le caratteristiche delle acque lacustri non siano ottimali dato l'alto insediamento urbano.

Un'ultima considerazione dal confronto delle tabelle 2-3 e 4-5: lo sviluppo dell'Oscillatoria sembra coincidere con la forte riduzione di alcune specie zooplanctoniche ed esattamente lo Eudiaptomus steueri e la Daphnia longispina.

CONCLUSIONI

È assai arduo trarre delle conclusioni sulle caratteristiche idrobiologiche del lago di Ledro con la prospettiva di poterle controllare in futuro, perché le continue massicce immissioni di acqua del Garda unitamente alle enormi variazioni di livello annuali rendono questo bacino assolutamente anomalo. Di quello che erano i suoi componenti originali poco è rimasto: sono variate le caratteristiche fisico-chimiche delle acque ed è variato il suo popolamento. Molte specie provenienti dal lago più grande si sono insediate nel nuovo ambiente, talvolta anche meglio di quanto non avvenga nel lago dal quale provengono (come, per esempio, fra gli organismi non planctonici, la *Dreyssena polimorpha*); altre invece fanno nel Ledro una fugace apparizione e poi scompaiono.

Si può ritenere che le variazioni future saranno probabilmente maggiomente legate a quelle delle acque del Garda che non a quelle delle acque

proprie del Ledro.

Ed è ragionevole pensare che alcune di queste variazioni poco avvertite in un lago delle dimensioni del Benaco abbiano avuto e possano avere in futuro degli effetti assai maggiori in un bacino molto più piccolo quale è il lago di Ledro.

BIBLIOGRAFIA

- Baldi E., Tonolli V., Tonolli-Pirocchi L., 1953 La differente evoluzione di due laghi già costituenti un unico bacino: il Lago Maggiore ed il Lago di Mergozzo. Mem. Ist. Ital. Idrobiol., 7,49-107.
- BROOKS J. L., 1969 Eutrophication and Changes in the Composition of the Zooplankton. In Eutrophication: causes, consequences, correctives: 236-255. National Academy of Sciences Washington, D.C.
- LARGAIOLLI V., 1931 Ricerche biolimnologiche sui laghi trentini. VII. Lago di Ledro. St. Trent. Sc. Nat., 12.
- MARCHESONI V., 1948 La biodinamica dei popolamenti ad Oscillatoria rubescens D.C. nei laghi di Caldonazzo e di Levico. Boll. Pesca Piscicolt. Idrobiol. 3, 2.
- Martinelli S., 1949 Il Lago di Ledro e il suo bacino imbrifero. St. Trent. Sc. Nat., 12.
- MINDER L., 1938 Der Zürichsee als Eutrophierungs-phänomen. Geol. Meere Binnengewässer 2: 284-299.
- RAVERA O., VOLLENWEIDER, R. A., 1968 Oscillatoria rubenscens D.C. as an Indicator of Lago Maggiore Eutrophication. Schweiz. Zeits. f. Hydrol. 30: 374-380.
- Ruttner F., 1959 Einige Beobachtungen über das Phytoplancton Nord Italienischer Seen. Mem. Ist. Ital. Idrobiol. 11.73-111.
- Tonolli V., 1956 Il Lago di Ledro nelle sue vicende di lago naturale, lago-serbatoio e lago rifornito. Mem. Ist. Ital. Idrobiol., 9:25-48.

Indirizzo dell'Autore:

GAETANO BARBATO, E.U.L.O., viale Europa 39 - 25100 BRESCIA